

Exercise 7

A single rectangular microchannel coated with a heterogeneous catalyst was used to carry out a gas phase catalytic reaction. An unwanted homogeneous reaction (combustion) took place in the gas phase. You are asked to propose a multichannel design to reduce the contribution of the homogeneous reaction by a factor of ten.

Data

$$r_{hom} = k_{hom} c_{gas}^2 \text{ (mol} \cdot \text{m}^{-3} \cdot \text{s}^{-1}) \quad k_{hom} = 0.94 \text{ mol}^{-1} \text{m}^3 \text{s}^{-1}$$

A pseudo-homogeneous model can be used to describe the kinetics of the heterogeneous reaction

$$r_{het} = k_{het} c_{gas}^{0.5} \text{ (mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}) \quad k_{het} = 1.8 \cdot 10^{-2} \text{ mol}^{0.5} \text{m}^{-0.5} \text{s}^{-1}$$

Channel dimensions in mm ($H \times W \times L$) = $0.25 \times 0.5 \times 50$

$$\text{Flowrate } \dot{Q} = 8.3 \cdot 10^{-8} \text{ m}^3 \text{s}^{-1}$$

$$\text{Density } \rho = 4.81 \text{ kgm}^{-3}$$

$$\text{Viscosity } \mu = 1.8 \cdot 10^{-5} \text{ Pa} \cdot \text{s}$$

$$\text{Inlet concentration of reactant } c_0 = 12 \text{ mol m}^{-3}$$

Questions

1. Calculate the ratio of characteristic times $\varphi = \frac{t_{het}}{t_{hom}}$ for the single channel reactor
2. Design a multichannel reactor to treat the same flowrate, keeping the residence time, the channel length and the aspect ratio $\frac{H}{W}$ constant, such that φ is decreased by a factor of ten
3. Calculate the Reynolds number for the mono-channel and multi-channel reactors. What is the flow regime? (hydraulic diameter = $d_h = 4 \frac{\text{cross-sectional area}}{\text{wetted perimeter}}$)

Solution

$$t_{hom} = \frac{1}{k_{hom} C_0^{n-1}} = \frac{1}{k_{hom} C_0} \neq f(H, W)$$

$$t_{het} = \frac{1}{a k_{het} C_0^{m-1}} = \frac{1}{k_{het} C_0^{-0.5}} \frac{H W}{2(H + W)}$$

$$\varphi_1 = \frac{t_{het}}{t_{hom}} = \frac{k_{hom}}{k_{het}} \frac{H_1 W_1}{2(H_1 + W_1)} C_0^{1.5} \rightarrow \varphi_1 = 0.18$$

$$\varphi_2 = 0.1\varphi_1 \quad \& \quad \frac{H}{W} = \frac{1}{2} = \text{const.}$$

$$0.018 = \frac{k_{hom}}{k_{het}} \frac{H_2 (2H_2)}{2(H_2 + 2H_2)} C_0^{1.5} \rightarrow H_2 = 2.5 \cdot 10^{-5} \text{ m}$$

$$W_2 = 2H_2 \rightarrow W_2 = 5 * 10^{-5} \text{ m}$$

Constant τ and $\dot{Q} \rightarrow$ constant volume: $V = \dot{Q}\tau = N_1 H_1 W_1 L_1 = N_2 H_2 W_2 L_2$

$$L_1 = L_2 \text{ and } \frac{H_1}{W_1} = \frac{H_2}{W_2} \rightarrow N_2 = N_1 \left(\frac{W_1}{W_2} \right)^2 \rightarrow N_2 = 1 * (10)^2 = 100$$

$$Re = \frac{\rho u d_h}{\mu} \text{ & } d_h = 4 \frac{H \cdot W}{2(H+W)} = 2 \frac{H \cdot W}{(H+W)} \rightarrow Re_1 = 59.4 \text{ & } Re_2 = 5.9$$

		Reactor 1	Reactor 2
W	m	5.0E-04	5.0E-05
L	m	5.0E-02	5.0E-02
N channels	-	1	100
H	m	2.5E-04	2.5E-05
dh	m	3.3E-04	3.3E-05
Vol_channel	m^3	6.3E-09	6.3E-11
Vol_tot	m^3	6.3E-09	6.3E-09
Cross section	m^2	1.3E-07	1.3E-09
u	m/s	6.7E-01	6.7E-01
tau	s	0.075	0.075
t_het	s	1.6E-02	1.6E-03
t_hom	s	8.8E-02	8.8E-02
t_het / t_hom	-	18%	1.8%
r_het / r_hom	-	5.5	55.1
Re	-	59.4	5.9
			Laminar